Датчики:
Система питания:
Система зажигания
Работа системы впрыска
Режимы управления топливоподачей :
Диагностика
Нейтрализатор
Токсичными компонентами отработавших
газов являются углеводороды (несгоревшее
топливо), окись углерода и окись азота. Для
преобразования этих компонентов в нетоксичные
служит трех компонентный каталитический
нейтрализатор, установленный в системе выпуска
сразу за приемной трубой глушителей. В
нейтрализаторе находятся керамические элементы
с микро каналами, на поверхности которых
нанесены катализаторы: два окислительных и один
восстановительный. Окислительные катализаторы
(платина и палладий) способствуют преобразованию
углеводородов в водяной пар, а окиси углерода в
безвредную двуокись углерода. Восстановительный
катализатор (родий) ускоряет химическую реакцию
восстановления оксидов азота и превращение их в
безвредный азот. Для эффективной нейтрализации
токсичных компонентов и наиболее полного
сгорания воздушно-топливной смеси необходимо,
чтобы на 14,6...14,7 частей воздуха приходилась 1
часть топлива. Такая точность дозирования
обеспечивается электронной системой впрыска
топлива, которая непрерывно корректирует подачу
топлива в зависимости от условий работы
двигателя и сигнала от датчика концентрации
кислорода в отработавших газах.
Предупреждение: Не
допускается работа двигателей с системой
впрыска топлива на этилированном бензине. Это
приведет к быстрому выходу из строя
нейтрализатора и датчика концентрации
кислорода.
Электронный блок управления (компьютер)
Электронный блок управления (ISFI-2S), расположенный
под панелью приборов с правой стороны, является
управляющим центром системы впрыска топлива. Он
непрерывно обрабатывает информацию от различных
датчиков и управляет системами, влияющими на
токсичность отработавших газов и на
эксплуатационные показатели автомобиля. В блок
управления поступает следующая информация о:
- положении и частоте вращения коленчатого вала;
- массовом расходе воздуха двигателем;
- температуре охлаждающей жидкости;
- положении дроссельной заслонки;
- содержании кислорода в отработавших газах;
- наличии детонации в двигателе;
- напряжении в бортовой сети автомобиля;
- скорости автомобиля;
- запросе на включение кондиционера.
На основе полученной информации блок
управляет следующими системами и приборами:
- топливоподачей (форсунками и
электробензонасосом);
- системой зажигания;
- регулятором холостого хода;
- адсорбером системы улавливания паров бензина;
- вентилятором системы охлаждения двигателя;
- муфтой компрессора кондиционера (если он есть
на автомобиле);
- системой диагностики.
Блок управления включает
исполнительные механизмы (форсунки, различные
реле, и т.д.) путем замыкания их на массу через
выходные транзисторы блока управления.
Единственное исключение - цепь реле топливного
насоса. Только на обмотку этого реле блок
управления подает напряжение +12 В. Электронный
блок управления имеет встроенную систему
диагностики. Он может распознавать неполадки в
работе системы, предупреждая о них водителя
через контрольную лампу "CHECK ENGINE". Кроме
того, он хранит в оперативной памяти
диагностические коды, указывающие области
неисправности, чтобы помочь специалистам в
проведении ремонта. Информацию о неполадках в
работе системы впрыска можно получить через
колодку диагностики, к которой подключается
специальный диагностический прибор "ТЕСН
1"(GM) или ДСТ-2М(Россия).
Память
В блоке управления имеется три вида
памяти: постоянная, оперативная и постоянная
программируемая. Постоянная память это
неизменяемая память. Информация в нее записана
физическим методом (прожиганием) в микросхемах
при изготовлении блока управления, и не может
быть изменена. Постоянная память содержит полные
алгоритмы управления системой впрыска.
Программируемая постоянная память содержит
различную калибровочную информацию по
автомобилю и находится в отдельном модуле - в
запоминающем устройстве калибровок, которое
может отсоединяться от блока управления. Эти
типы памяти не нуждаются в питании для
сохранения записанной в них информации, которая
не стирается при отключении питания. Оперативная
память - это "блокнот" блока управления, в
ней хранится вся текущая информация
используемая для управления двигателем.
Процессор блока управления может записывать
туда информацию и считывать ее при
необходимости. Эта память требует питания для
сохранения записанной информации. При
отключении питания от АБ хранящиеся в
оперативной памяти коды неисправностей и другие
данные стираются. Именно поэтому на
автомобилях оборудованных электронными
системами управления двигателем не
рекомендуется отключать АБ без острой
необходимости.
Запоминающее устройство калибровок
Оно применяется для того, чтобы одну
модель блока управления можно было
устанавливать на различных моделях автомобилей.
Запоминающее устройство калибровок 1 (рис. 9-33)
расположено внутри блока управлении под крышкой
с нижней стороны и содержит информацию о массе
автомобиля, двигателе, трансмиссии, главной
передаче и некоторые другие данные. Если сам блок
управления (без запоминающего устройства) может
применяться на различных автомобилях, то
запоминающее устройство калибровок специфично
для каждой модели автомобиля. Поэтому при замене
блока управления, запоминающее устройство
калибровок должно соответствовать конкретной
модели автомобиля.
Датчики
Датчик температуры охлаждающей
жидкости представляет собой термистор,
(резистор, сопротивление которого изменяется от
температуры). Датчик завернут в выпускной
патрубок охлаждающей жидкости, закрепленный на
головке цилиндров, т.е. находится в потоке
охлаждающей жидкости. При низкой температуре
охлаждающей жидкости датчик имеет высокое
сопротивление (100 кОм при -40 град.С), а при высокой
температуре - низкое (70 0м при 130 град.С).
Электронный блок управления подает к датчику
через сопротивление определенной величины
напряжение 5 В (образуя таким образом делитель
напряжения) и измеряет падение напряжения на
датчике. Оно будет высоким на холодном двигателе
и низким, когда двигатель прогрет. Измерением
падения напряжения блок управления узнает
температуру охлаждающей жидкости. Эта
температура влияет на работу большинства систем,
которыми управляет блок управления.
Датчик концентрации кислорода
устанавливается на приемной трубе
глушителей, он отслеживает содержание
остаточного кислорода в потоке отработавших
газов. В датчике находится чувствительный
элемент из окиси циркония. В зависимости от
концентрации кислорода в отработавших газах
датчик генерирует выходное напряжение. Оно
изменяется приблизительно от 0,1 В (высокое
содержание кислорода - бедная смесь) до 0,8 В (мало
кислорода- богатая смесь). Для нормальной работы
датчик должен иметь температуру не ниже 360 град.С.
Поэтому для быстрого прогрева после пуска
двигателя, в датчик встроен нагревательный
элемент. Отслеживая выходное напряжение датчика
концентрации кислорода, блок управления
определяет какую команду по корректировке
состава рабочей смеси подавать на форсунки. Если
смесь бедная (низкая разность потенциалов на вы
ходе датчика), то дается команда на обогащение
смеси. Если смесь богатая (высокая разность
потенциалов) - дается команда на обеднение смеси.
Датчик
массового расхода воздуха 2 (см. рис. 9-36)
устанавливается между воздушным фильтром 1 и
шлангом 10, идущим к дроссельному патрубку 3. В
датчике используются три чувствительных
элемента в виде струн. Один элемент определяет
температуру воздуха, а два других, соединенные
параллельно, нагреваются до определенной
температуры, превышающей температуру воздуха.
Проходящий через датчик воздух охлаждает
нагреваемые элементы.. Электронная схема датчика
определяет расход воздуха путем измерения
электрической мощности, необходимой для
поддержания заданной температуры нагреваемых
элементов. Информацию о расходе воздуха датчик
выдает в виде частотного сигнала (2-10 кГц). Чем
больше расход воздуха, тем выше частота сигнала.
Блок управления использует информацию от
датчика массового расхода воздуха для
определения длительности импульса открытия
форсунок.
Датчик положения дроссельной заслонки
установлен сбоку на дроссельном патрубке и
связан с осью дроссельной заслонки. Датчик
представляет собой потенциометр, на один конец
которого подается плюс напряжения питания 5 В, а
другой конец соединен с массой. С третьего вывода
потенциометра (от ползунка) идет выходной сигнал
к блоку управления. Когда дроссельная заслонка
поворачивается (от воздействия на педаль
управления), изменяется напряжение на выходе
датчика. При закрытой дроссельной заслонке оно
ниже 1,25 В. Когда заслонка открывается, напряжение
на выходе датчика растет и при полностью
открытой заслонке должно быть более 4 В.
Отслеживая выходное напряжение датчика блок
управления корректирует подачу топлива в
зависимости от угла открытия дроссельной
заслонки (т.е. по желанию водителя). Датчик
положения дроссельной заслонки не требует
никакой регулировки, т.к. блок управления
воспринимает холостой ход (т.е. полное закрытие
дроссельной заслонки), как нулевую отметку.
Датчик
скорости автомобиля устанавливается на
коробке передач на приводе спидометра. Принцип
действия датчика основан на эффекте Холла.
Датчик выдает на блок управления прямоугольные
импульсы напряжения с частотой,
пропорциональной скорости вращения ведущих
колес. Для стандартных колес размером 165/70R13
датчик выдает 6 импульсов на каждый метр пробега.
Датчик
детонации заворачивается в верхнюю часть
блока цилиндров и улавливает аномальные
вибрации (детонационные удары) в двигателе.
Чувствительным элементом датчика является
пьезокристаллическая пластинка. При детонации
на выходе датчика генерируются импульсы
напряжения, которые увеличиваются с
возрастанием интенсивности детонационных
ударов. Блок управления по сигналу датчика
регулирует опережение зажигания для устранения
детонационных вспышек топлива.
Сигнал запроса на включение
кондиционера
Если на автомобиле установлен
кондиционер, то сигнал поступает от выключателя
кондиционера на панели приборов. В данном случае
блок управления получает информацию о том, что
водитель желает включить кондиционер. Получив
такой сигнал блок управления сначала
подстраивает регулятор холостого хода, чтобы
компенсировать дополнительную нагрузку на
двигатель от компрессора кондиционера, а затем
включает реле, управляющее работой компрессора
кондиционера.
Датчик положения коленчатого вала
- индуктивный, предназначен для синхронизации
работы блока управления с верхней мертвой точкой поршней 1-го и
4-го цилиндров и угловым положением коленчатого
вала двигателя. Сопротивление обмотки 650 Ом +/-10%,
индуктивность 265 мГн+/- 15% на частоте 1 кГц при
температуре 20 град.С. Датчик установлен на
кронштейне крышки масляного насоса напротив
задающего диска на шкиве привода генератора. У
задающего диска имеется 58 зубьев с шагом в 6 град.
ПКВ. При таком шаге на диске помещается 60 зубьев,
но два зуба срезаны для создания импульса
"в" (рис. 9-34) синхронизации ("Опорного"
импульса), который необходим для согласования
работы контроллера с ВМТ поршней в 1-ом и 4-ом
цилиндрах. Датчик генерирует импульсы
напряжения при прохождении в его магнитном поле
зубьев задающего диска. Установочный зазор между
сердечником датчика и зубом диска должен
находиться в пределах (1+0,41) мм. Блок управления по
сигналам датчика положения коленчатого вала
определяет частоту вращения коленчатого вала и
выдает импульсы на форсунки.
Система питания
Система питания состоит из
электробензонасоса 4 (рис. 9-35) топливного фильтра
6, топливо проводов 5 и 7, топливной рампы,
регулятора давления 3 и форсунок 2.
Электробензонасос подает топливо через фильтр к
топливной рампе и форсункам 2. Регулятор
поддерживает в топливной рампе давление на
уровне 284...325 кПа. Избыток топлива из регулятора
возвращается в топливный бак по сливному
трубопроводу 7. В топливной рампе имеется штуцер 1
для присоединения манометра 8 для контроля
давления топлива. Электронный блок управления
включает форсунки по очереди попарно через
каждые 180 град. поворота коленчатого вала.
Электробензонасос. В
системе питания применяется двухступенчатый
неразборный электробензонасос
роторно-роликового типа. Он обеспечивает подачу
топлива под давлением более 284 кПа.
Электробензонасос расположен непосредственно в
топливном баке, что снижает возможность
образования паровых пробок, т.к. топливо подается
под давлением, а не под действием разрежения.
Топливный
фильтр 6 встроен в подающую
магистраль 5 между электробензонасосом и
топливной рампой, и установлен под днищем кузова,
рядом с топливным баком. Фильтр неразборный,
имеет стальной корпус с бумажным фильтрующим
элементом. Топливные форсунки. Форсунки крепятся
к топливной рампе, от которой к ним подается
топливо, а своими распылителями входят в
отверстия впускной трубы. В отверстиях топливной
рампы и впускной трубы форсунки уплотняются
резиновыми уплотнительными кольцами.
Форсунка
представляет собой электромагнитное устройство,
сопротивление обмотки 11.8 Ом при 20 град.С. Когда
блок управления включает форсунку, то клапан
форсунки поднимается и открывает отверстия в
направляющей пластине, через которые
распыляется топливо. Коническая струя тонко
распыленного топлива впрыскивается на впускной
клапан. Здесь топливо испаряется, соприкасаясь с
нагретыми деталями, и в парообразном состоянии
попадает в камеру сгорания.
Регулятор
давления топлива установлен на топливной
рампе и предназначен для поддержания
постоянного перепада давления между давлением
топлива в форсунках и давлением воздуха во
впускной трубе. Регулятор представляет собой
мембранный клапан. С одной стороны на мембрану
действует давление топлива, а с другой- усилие
пружины и давление воздуха из ресивера, с которым
регулятор соединен шлангом. Чем больше давление
воздуха в ресивере (т.е. чем больше нагрузка на
двигатель), тем больше давление топлива. При
уменьшении нагрузки на двигатель, когда давление
топлива превышает суммарное усилие от пружины и
от давления воздуха, клапан регулятора
открывается и избыток топлива по сливной
магистрали возвращается в топливный бак.
Дроссельный патрубок
3 (см. рис. 9-36) установлен на входе в ресивер. В нем
находится дроссельная заслонка, датчик
положения дроссельной заслонки и регулятор
холостого хода. На патрубке имеются также
штуцеры для отсоса картерных газов и паров
топлива из адсорбера. Регулятор холостого хода
состоит из клапана с конусной иглой,
управляемого шаговым электродвигателем.
Регулятор обеспечивает желаемую частоту
вращения коленчатого вала на холостом ходу,
изменяя количество воздуха, проходящего в обход
закрытой дроссельной заслонки.Когда игла
регулятора полностью выдвинута (что
соответствует 0 шагов) клапан полностью
перекрывает проход воздуха. Когда игла
вдвигается, то обеспечивается расход воздуха,
пропорциональный количеству шагов отхода иглы
от седла. Полностью убранное положение иглы
соответствует 255 шагам.
Система улавливания паров бензина
В системе применен метод улавливания
паров бензина адсорбером (емкостью с
активированным углем). Адсорбер установлен в
моторном отсеке, и соединен трубопроводами с
топливным баком и дроссельным патрубком. На
крышке адсорбера расположен электромагнитный
клапан, которым по сигналам блока управления
переключаются режимы работы системы. Когда
двигатель не работает, электромагнитный клапан
закрыт и пары бензина из топливного бака по
трубопроводу подводятся к адсорберу, где
поглощаются гранулированным активированным
углем. При работающем двигателе блок управления
открывает и закрывает электромагнитный клапан
импульсами с частотой 16 Гц. Когда клапан открыт,
он перекрывает подачу паров бензина и открывает
отверстие для доступа а адсорбер воздуха.
Происходит продувка адсорбера. Смесь паров
бензина с воздухом отсасывается из адсорбера по
шлангу в дроссельный патрубок за дроссельную
заслонку. Скважность импульсов, подаваемых
блоком управления на клапан может изменяться от 0
до 100%. Скважность равная 0% означает, что клапан не
открывается и продувки адсорбера нет. Скважность
равная 100% - клапан практически не закрывается и
происходит полная продувка адсорбера. Чем выше
расход воздуха двигателем, тем больше объем
допускаемой продувки. Блок управления включает
электромагнитный клапан продувки при следующих
условиях:
- температура охлаждающей жидкости выше 75град.С;
- система управления топливоподачей работает в
режиме замкнутого цикла;
- скорость автомобиля больше 10 км/ч.
После включения продувка продолжается
до полного открытия дроссельной заслонки, когда
клапан запирается.
Система зажигания
Система зажигания - электронная, высокой
энергии. Блок управления по сигналам датчиков
определяет момент зажигания и выдает
управляющие импульсы на модуль зажигания, в
котором объединены две катушки зажигания и
коммутатор. Модуль зажигания закреплен на блоке
цилиндров двигателя с той стороны, где находятся
свечи зажигания. Система зажигания не имеет
каких-либо подвижных деталей, и поэтому не
требует обслуживания и регулировок в
эксплуатации. Для точного расчета момента
зажигания блоком управления используется
следующая информация:
- частота вращения и положение коленчатого вала;
- массовый расход воздуха;
- положение дроссельной заслонки
- температура охлаждающей жидкости;
- наличие детонации.
Модуль зажигания по сигналам блока
управления выдает импульсы высокого напряжения
на свечи зажигания. Причем включаются сразу две
свечи: 1 и 4 или 2 и 3 цилиндров. Искрообразование
происходит одновременно в цилиндре, находящемся
в конце такта сжатия (рабочая искра), и в цилиндре,
где происходит конец такта выпуска (холостая
искра).
Работа системы впрыска
Количество топлива, подаваемого
форсунками, регулируется электрическим
импульсным сигналом от блока управления. Блок
управления отслеживает множество данных о
состоянии двигателя, рассчитывает потребность в
топливе и определяет необходимую длительность
подачи топлива форсунками. Эту длительность
называют шириной или длительностью импульса
впрыска. Для увеличения количества подаваемого
топлива ширина импульса увеличивается, а для
уменьшения подачи топлива - уменьшается. Ширина
(длительность) импульса впрыска подбирается
блоком управления также и в зависимости от
различных условий работы двигателя, таких,
например, как пуск, высокогорье, мощностное
обогащение рабочей смеси, торможение двигателем
и т.д. Обычно к форсункам подается один импульс на
один опорный импульс от датчика положения
коленчатого вала. Причем импульсы подаются
поочередно сразу на две форсунки. Например,
сначала на форсунки цилиндров 1 и 4, затем через
180град. ПКВ на форсунки цилиндров 2 и 3, затем через
180град. ПКВ снова на форсунки цилиндров 1 и 4, и т.д.
Впрыск топлива осуществляется одним из двух
способов: либо синхронно с опорными импульсами
от датчика положения коленчатого вала либо
асинхронно, независимо от опорных импульсов.
Синхронный впрыск топлива - наиболее
употребительный способ подачи топлива.
Асинхронный впрыск топлива применяется, когда
необходимо дополнительное топливо при резком
открытии дроссельной заслонки, о чем
сигнализирует датчик положения дроссельной
заслонки. Этот впрыск топлива подобен подаче
топлива ускорительным насосом карбюратора при
резком открытии дроссельной заслонки.
Независимо от метода впрыска подача топлива
определяется состоянием двигателя, т.е. режимом
его работы. Эти режимы обеспечиваются блоком
управления и описаны ниже.
Режимы управления
топливоподачей
Режим
пуска двигателя
При включении зажигания блок управления
включает на 2 с реле топливного насоса, и насос
создает давление в магистрали подачи топлива к
топливной рампе. Блок управления учитывает
показания от датчиков температуры охлаждающей
жидкости и положения дроссельной заслонки и
определяет правильное соотношение
воздух/топливо для пуска. После начала вращения
коленчатого вала блок управления будет работать
в пусковом режиме пока обороты двигателя не
превысят 500 об/мин, в противном случае возможно
переключение на режим "продувки" двигателя.
Режим
продувки двигателя
Если двигатель "залит топливом", он
может быть пущен путем полного открытия
дроссельной заслонки при одновременном
проворачивании коленчатого вала. Блок
управления в этом режиме не выдает на форсунку
импульсы, что "очищает" залитый двигатель.
Блок управления поддерживает указанную
длительность импульсов до тех пор, пока обороты
двигателя ниже 500 об/мин, и датчик положения
дроссельной заслонки показывает, что она почти
полностью открыта (более 75%).
Примечание. Если
дроссельная заслонка удерживается почти
полностью открытой при попытке нормального
пуска "не залитого" двигателя, то двигатель
может не пуститься, т.к. при полностью открытой
дроссельной заслонке импульсы впрыска на
форсунки не подаются.
Режим открытого цикла (без обратной
связи по датчику кислорода)
После пуска двигателя (когда обороты
более 500 об/мин ) блок управления будет управлять
системой подачи топлива в режиме "открытого
цикла". На этом режиме он игнорирует сигнал от
датчика концентрации кислорода и рассчитывает
длительность импульса па форсунку по сигналам от
следующих датчиков:
- датчика положения коленчатого вала;
- датчика массового расхода воздуха;
- датчика температуры охлаждающей жидкости;
- датчика положения дроссельной заслонки.
На режиме открытого цикла расчетная
длительность импульса может давать соотношение
воздух/топливо отличное от 14,7:1. Это будет,
например, на холодном двигателе, т.к. в этом
случае для получения хороших нагрузочных
характеристик необходима обогащенная смесь.
Блок управления будет оставаться в режиме
открытого цикла до тех пор, пока не будут
выполнены все следующие условия:
- сигнал датчика концентрации кислорода начал
изменяться, показывая, что он достаточно прогрет
для нормальной работы;
- температура охлаждающей жидкости стала больше
32град.С;
- двигатель проработал определенный период
времени после пуска. Это время может
варьироваться от 6 сек до 5 мин в зависимости от
температуры охлаждающей жидкости в момент пуска.
Режим замкнутого цикла (с обратной
связью по датчику кислорода)
На этом режиме блок управления сначала
рассчитывает длительность импульса на форсунки
на основе сигналов от тех же датчиков, что и в
режиме открытого цикла. Отличие состоит в том,
что в режиме замкнутого цикла еще используется
сигнал от датчика концентрации кислорода для
корректировки и тонкой регулировки расчетного
импульса, чтобы точно поддерживать соотношение
воздух/топливо на уровне 14,6...14,7:1. Это позволяет
каталитическому нейтрализатору работать с
максимальной эффективностью.
Режим
ускорения
Блок управления следит за резкими
изменениями положения дроссельной заслонки и за
расходом воздуха и обеспечивает подачу
добавочного количества топлива за счет
увеличения длительности импульса на форсунки,
Если возросшая потребность в топливе слишком
велика из-за резкого открытия дроссельной
заслонки, то блок управления может добавить
асинхронные импульсы на форсунки в промежутках
между синхронными импульсами, которых при
нормальной работе приходится один на каждый
опорный импульс от датчика положения
коленчатого вала.
Мощностное
обогащение
Для определения моментов, в которые
необходима максимальная мощность двигателя,
блок управления следит за положением
дроссельной заслонки и частотой вращения
коленчатого вала. Для развития максимальной
мощности требуется более богатый состав
воздушно-топливной смеси, чем 14,7:1, т.е. больше
топлива. В этом режиме блок управления изменяет
состав смеси на соотношение 12:1, и не учитывает
сигнал от датчика концентрации кислорода, т.к.
тот показывает на переобогащенность смеси.
Режим
торможения
Когда благодаря закрытой дроссельной
заслонке падают обороты двигателя, то оставшееся
топливо во впускной трубе может быть причиной
увеличения токсичности отработавших газов. Блок
управления отслеживает поворот заслонки на
закрытие, а также уменьшение расхода воздуха и
снижает подачу топлива сокращением длительности
импульсов на форсунки.
Торможение двигателем
Когда происходит торможение двигателем
при включенных сцеплении и передаче, блок
управления может кратковременно прекратить
подачу импульсов на форсунки. Такой режим
наступает, когда выполняются следующие условия:
- температура охлаждающей жидкости выше 20 град.С;
- частота вращения коленчатого вала выше 1800 мин -1.
скорость автомобиля более 20 км/ч;
- дроссельная заслонка закрыта;
- массовый расход воздуха более 43 г/сек.
Возобновление импульсов впрыска
топлива произойдет при наличии любого из
следующих условий:
- частота вращения коленчатого вала ниже 1600 мин -1,
- скорость автомобиля меньше 20 км/ч;
- дроссельная заслонка открыта на 2 % или более;
- массовый расход топлива больше 38 г/сек;
- выключено сцепление, что определяется по
быстрому падению оборотов.
Режим корректировки напряжения
аккумуляторной батареи
При понижении напряжения
аккумуляторной батареи форсунки открываются
медленнее. Блок управления компенсирует это
увеличением длительности импульсов на форсунки
и оборотов холостого хода. Кроме того,
увеличивается время накопления тока на катушках
модуля зажигания.
Режим отключения подачи топлива
Топливо не впрыскивается форсунками при
выключенном зажигании, чтобы не происходило
самовоспламенения топлива в цилиндрах. Кроме
того, не подаются импульсы на форсунки, если блок
управления не получает опорных импульсов от
датчика положения коленчатого вала, что означает
остановку двигателя. Режим отключения подачи
TOILAUBB возможен также при высоких оборотах
двигателя (свыше 6188 об/мин), для защиты его от
разноса. В последнем случае подача топлива
возобновляется как только обороты двигателя
упадут ниже 6000 об/мин.
Диагностика
Введение
Диагностика системы управления двигателем с
электронным впрыском топлива достаточно проста,
если придерживаться правильного порядка
проведени диагностики. Первым и наиболее важным
условием успешного установления причины
неисправности любой системы является понимание
работы системы в нормальный условиях. Вторым
весьма желательным условием является наличие
необходимых средств диагностики, справочных
пособий и руководств по ремонту.
Не следует забывать, что за всеми жгутами
проводов, электроникой и датчиками стоит базовый
двигатель внутреннего сгорания.
Работоспособность системы управления
двигателем и системы впрыска в частности
основана на надлежащем функционировании
механических систем. В качестве напоминани ниже
приводится ряд проблем "базового
двигателя", вызывающих условия, которые могут
быть ошибочно приписаны работе
"электроники" системы управления
двигателем:
- низкая степень сжатия;
- утечки разрежения;
- сопротивление системы выпуска;
- негерметичность или закупорка топливной
системы;
- отклонения в фазах газораспределения;
- плохое качество топлива;
- несоблюдение сроков проведения ТО.
Электронный блок управления осуществляет
постоянную самодиагностику по ряду функций
управления. Для сообщений о причинах
неисправностей ЭБУ использует язык
диагностических кодов. При обнаружении
электронным блоком управления неисправности, ее
код заносится в память и включается контрольна
лампа "CHECK ENGINE".
Контрольная лампа находится на приборной
панели и выполняет следующие функции:
Оповещает водителя о неисправности и
необходимости проведени ТО в возможно короткий
срок. Включение лампы НЕ ОЗНАЧАЕТ, что двигатель
необходимо заглушить.
Отображает диагностические коды, хранящиеся в
памяти ЭБУ и помогающие в диагностике
неисправностей ситемы.
При включении зажигания и неработающем
двигателе контрольная лампа загорается,
свидетельствуя об исправности лампочки и
системы самодиагностики. После запуска
двигателя лампа выключается. Если лампа
продолжает гореть, это означает, что система
самодиагностики обнаружила неисправность. Если
неисправность самоустраняется, в большинстве
случаев через 10 секунд лампа выключается, но
диагностический код сохраняется в памяти ЭБУ.
Коды неисправностей
КОД |
НАИМЕНОВАНИЕ
НЕИСПРАВНОСТИ |
13 |
Отсутствует сигнал датчика
кислорода |
14 |
Недостаточное напряжение сигнала с
датчика температуры охлаждающей жидкости |
15 |
Завышенное напряжение сигнала с
датчика темпрературы охлаждающей жидкости |
16 |
Высокое напряжение бортсети |
19 |
Ошибка датчика положения коленвала |
21 |
Завышенное напряжение сигнала с
датчика положения дроссельной заслонки |
22 |
Заниженное напряжение сигнала с
датчика положения дроссельной заслонки |
24 |
Отсутствует сигнал скорости
автомобиля |
34 |
Неисправность датчика массового
расхода воздуха |
35 |
Ошибка частоты вращения КВ на
холостом ходу |
41 |
Неисправность датчика распредвала |
42 |
Неисправность цепи управления
электронным зажиганием |
43 |
Неисправность канала детонации |
44 |
Обедненный состав смеси |
45 |
Обогащенный состав смеси |
49 |
Утечка вакуума в адсорбере |
51 |
Ошибка запоминающего устройства
калибровок |
55 |
Датчик кислорода "беден" при
мощностном обогащении |
61 |
Деградировавший датчик кислорода |
66 |
Ошибка сброса электронного блока
управления |
Считывание кодов неисправностей
Для связи с электронным блоком управления
предусмотрена колодка диагностики. Коды,
хранящиеся в памяти ЭБУ, можно считать с помощью
диагностического тестера "TECH 1" или ДСТ-2М, подключив его к
колодке диагностики, а также при помощи
контрольной лампы "CHECK ENGINE".
Для того чтобы считать коды неисправностей при
помощи контрольной лампы, необходимо замкнуть
выводы А и В колодки диагностики и включить
зажигание, не заводя двигатель. В этот момент
лампа СЕ должна выдать код 12 три раза подряд.
Последовательность следующая: включение лампы,
короткая пауза, два включения подряд, длинная
пауза и так еще два раза. Код 12 не является кодом
неисправности, он свидетельствует о том, что
система самодиагностики работоспособна. Если
код 12 отсутствует, это означает что система
самодиагностики неисправна.
После выдачи кода 12 лампа СЕ начнет выдавать
обнаруженные коды неисправности в порядке
возрастания их номера. Каждый код выдается
трижды. И так по кругу. Если нет обнаруженных
кодов неисправностей будет выдаваться только
код 12.
Очистка кодов неисправностей
Имеются два способа стирания из памяти
электронного блока управления кодов
неиисправностей по завершении ремонта или для
контроля повторного появления. Коды можно
стереть при помощи диагностического тестера или
отключив блок управления от АБ на 30 секунд.